Synthesis and anti-influenza virus activities of a novel class of gastrodin derivatives.

نویسندگان

  • Si-Tu Xue
  • Wei-Ying He
  • Lin-Lin Ma
  • Hui-Qiang Wang
  • Bo Wang
  • Guang-Hui Zheng
  • Xing-Yue Ji
  • Tian Zhang
  • Yu-Huan Li
  • Jian-Dong Jiang
  • Zhuo-Rong Li
چکیده

A series of substituted aryl glycoside analogues of gastrodin have been identified as potential anti-influenza agents. The most potent inhibitor 1a exhibited moderate inhibitory activity against the A/Hanfang/359/95(H3N2) and A/FM/1/47(H1N1) strains of the influenza A virus (IC(50) values of 44.40 and 34.45 μM, respectively) and the oseltamivir-null B/Jifang/13/97 strain of influenza B (IC(50) value of 33.01 μM). In this article, multiple doses of compound 1a (80 mg/kg/day, oral administration) were used for the treatment of mice infected with influenza A/FM/1/47-MA (H1N1), and surprisingly we found that compound 1a significantly increased the number of survivors and prolonged the mean survival time. The preliminary studies on the mechanism of antiviral activity showed no interaction between compound 1a and the neuraminidase or the M2 protein. The novel target to overcome drug resistance combined with its good in vivo profile support compound 1a to be a new lead for further development of antiviral agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of some Novel Chromenopyrimidine Derivatives and Evaluation of Their Biological Activities

AbstractPyrimidine nucleosides are constituents of fundamental structure of the cells. There has been considerable attentions in the chemistry of pyrimidine derivatives due to having a wide range of biological activities such as antiviral, anti-malarial agents, cytostatic, antithelemintic, antibacterial, adenosine receptor ligands, anti-cancer agents, compounds targeting delayed-type hypersensi...

متن کامل

Synthesis of some Novel Chromenopyrimidine Derivatives and Evaluation of Their Biological Activities

AbstractPyrimidine nucleosides are constituents of fundamental structure of the cells. There has been considerable attentions in the chemistry of pyrimidine derivatives due to having a wide range of biological activities such as antiviral, anti-malarial agents, cytostatic, antithelemintic, antibacterial, adenosine receptor ligands, anti-cancer agents, compounds targeting delayed-type hypersensi...

متن کامل

Synthesis and Antimicrobial Activity of some Tetrahydro Quinolone Diones and Pyrano[2,3-d]pyrimidine Derivatives

There has been special interest in the chemistry of quinolone and pyrimidine derivatives due to their diverse biological activities such as anticonvulsant, anti-malarial agents, antibacterial, antiviral, cytostatic, antithelemintic, antigenotoxic, anti-cancer agents. These compounds are also used as targeting delayed-type hypersensivity and anti-convulsant agents. As a part of our research work...

متن کامل

Synthesis and Antimicrobial Activity of some Tetrahydro Quinolone Diones and Pyrano[2,3-d]pyrimidine Derivatives

There has been special interest in the chemistry of quinolone and pyrimidine derivatives due to their diverse biological activities such as anticonvulsant, anti-malarial agents, antibacterial, antiviral, cytostatic, antithelemintic, antigenotoxic, anti-cancer agents. These compounds are also used as targeting delayed-type hypersensivity and anti-convulsant agents. As a part of our research work...

متن کامل

Anti-influenza Activity of a Novel Polyoxometalate Derivative (POM-4960)

There are many effective chemothereutic agents used in influenza disease which some of them inhibit virus replication by interfering with FluV (influenza virus) viral binding or its penetration into cell membrane. A series of polyoxometalates compounds such as POM-523 and PM-504 have been synthesized and have showed inhibitory effects on viruses. In this study we examined anti influenza activit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2013